Hyperbolic limit of the Jin-Xin relaxation model

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Limit of the Jin-xin Relaxation Model

We consider the special Jin-Xin relaxation model (0.1) ut + A(u)ux = 2(uxx − utt), We assume that the initial data (u0, 2u0,t) are sufficiently smooth and close to (ū, 0) in L∞ and have small total variation. Then we prove that there exists a solution (u2(t), 2ut(t)) with uniformly small total variation for all t ≥ 0, and this solution depends Lipschitz continuously in the L1 norm w.r.t. the in...

متن کامل

Stability of Jin-xin Relaxation Shocks

We examine the spectrum of shock profiles for the Jin-Xin relaxation scheme for systems of hyperbolic conservation laws in one spatial dimension. By using a weighted norm estimate, we prove that these shock profiles exhibit strong spectral stability in the weak shock limit.

متن کامل

A Glimm Type Functional for a Special Jin–xin Relaxation Model

We consider a special case of the Jin–Xin relaxation systems ut + vx = 0, vt + λ ux = (F (u)− v)/ . (∗) We assume that the integral curves of the eigenvectors ri of DF (u) are straight lines. In this setting we prove that for every initial data u, v with sufficiently small total variation the solution (u , v ) of (∗) is well defined for all t > 0, and its total variation satisfies a uniform bou...

متن کامل

Entropic sub-cell shock capturing schemes via Jin-Xin relaxation and Glimm front sampling for scalar hyperbolic conservation laws

We introduce a sub-cell shock capturing method for scalar conservation laws built upon the Jin-Xin relaxation framework. Here, sub-cell shock capturing is achieved thanks to an original defect measure correction technique. The proposed correction exactly restores entropy shock solutions of the exact Riemann problem and moreover, it produces monotone and entropy satisfying approximate self-simil...

متن کامل

The Zero Relaxation Limit for 2 2 Hyperbolic

We study the zero relaxation limit for a class of 2 2 strictly hy-perbolic systems of balance laws. In particular we show the strong convergence toward the solution of the formal limit of the system and the validity of an innnite number of Kru zkov-type entropy inequalities. Moreover, we give a uniqueness result for this solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2006

ISSN: 0010-3640,1097-0312

DOI: 10.1002/cpa.20114